Multitemporal Segmentation by Means of Fuzzy Sets

نویسندگان

  • Robert Jeansoulin
  • Yves Fontaine
  • Werner Frei
  • ROBERT JEANSOULIN
  • YVES FONTAINE
چکیده

A remote sensing user does not photointerprete image pixels, but entities. Therefore, there is a segmentation processing, previous to the recognition itself. What we propose in this paper, is to automate the segmentation by using of monospectral, multispectral and multitemporal properties, measured by several criteria. The combination of these criteria is performed by means of tools of the fuzzy sets theory. A designated entity is automatically segmented by combining a sequence of criteria in order to converge towards the final decision without any thresholding, weighing, ..• The ready access to the multi temporal data belonging to a same designated entity, is obtained by comparing the segmentation results at different dates, through geometric deformation models. Finally the radiometries, extracted entity/ entity, by using this segmentation method, feed the diachronic analysis in the context of the Lauragais experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Decision making in medical investigations using new divergence measures for intuitionistic fuzzy sets

In recent times, intuitionistic fuzzy sets introduced by Atanassov has been one of the most powerful and flexible approaches for dealing with complex and uncertain situations of real world. In particular, the concept of divergence between intuitionistic fuzzy sets is important since it has applications in various areas such as image segmentation, decision making, medical diagnosis, pattern reco...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013